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ABSTRACT

,,,,,

Previous investigators have demonstrated the similarities of
cohesive and adhesive fracture through continuum mechanical energy
approaches. These approaches have been applied to viscoelastic
cohesive fatigue fracture problems and to elastic adhesive fracture
analyses. Experimental results graphically illustrate the need for
thermomechanical coupling considerations in viscoelastic fatigue
fracture predictions. An adhesive fracture test method was developed
that verified the analytical predictions and also has engineering
applications for evaluation of bond strengths. Some applications are
demonstrated by exampnles of a solid rocket motor and a filament

withdrawn from a surrounding matrix.
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I. INTRODUCTION

Even from earliest times, as man began to reshape his environment,
to implement naturally occurring materials as tools, weapons and pro-
tective structures, he has been plagued by fracture were made useless by
impact fracture. Roman soldiers became defenseless when their bronze
sword blades fractured against the steel blades of Damaskians. Price-
less stone art objects were fractured by careless handling. More
recently, many lives have been lost because of fracture in bridge
structures, automobile, airplane and construction components. As greater
reliance is placed on structural extensions of man's abilities, it is

increasingly important that fracture be understood and controlled.

1.1 HISTORIC BACKGROUND
Probably one of the first significant observations that led to

(1) attempted

a better understanding of fracture came when Galilei
to measure the strength of iron bars. Through very arduous labor,
he made and Toaded a number of bars of different Tengths to failure.
He observed that their strength was inversely proportional to length.
This was a surprise. It had been previously recognized that the force
necessary to break a specimen was Tinearly proportional to the size or
cross-sectional area. But this length dependence--was it a new
phenomenon?

Progress was slow, thinking clouded by superstition, but eventually
it was recognized that all technical materials contain flaws and that

these flaws influence fracture. Once flaws were recognized, Galilei's

work could be re-examined. His manufacturing techniques were crude



and each of his bars contained flaws, some more than others. From
a statistical approach, quantitized by w@ibu1fg<2) the Tonger the
bar, the greater the probability of containing a large flaw. Then
it was understood that Galilei's experiments were influenced by the
distribution of flaws, not by length.

Several investigators developed qualitative ideas about fracture
and stress/strain criteria for fracture developed. In 1913, Ing]is(3)
developed a stress analysis for a large plate containing an elliptic
hole, which in the limit became a sharp crack. It was not until

ariffith(4)

added his energy balance concept to the Inglis work that
brittle or elastic fracture was quantitatively described.

Before Griffith, the concept of stress/strain was used as failure
criteria. The technique, much the same as today, was fo consider a
structure, calculate the stress/strains in the loaded structure, and
then compare these calculated values with measured ultimate tensile
strength of the material. The solution developed by Inglis predicted
infinitely high stresses at the tip of a sharp crack, regardless of the
magnitude of the applied (positive) load. So comparisons of this
predicted stress value to measured ultimate values become meaningless.
Griffith recognized that while the calculated stress was mathematically
singular, the distribution was proportional to the inverse square root
of the distance from the crack tip and the resulting strain energy was
finite and calculable. He then postulated that there is a characteristic
fracture eneray associated with creating new surface, and demonstrated

how an energy balance could be made for a sheet of brittle material (glass)

containing a crack and how the critical stress (just large enough to cause




the pre-existing crack to grow) depends upon that fracture energy.
From fracture experiments made using glass, the fracture energy was cal-
culated. Independent experiments to determine the surface energy were
conducted at elevated temperatures by hanging weights midspan on thin
glass fibers supported at either end. The surface energy and the frac-
ture energy were found to be approximately equal and it was deduced
that other dissipative mechanisms were negligible in the fracture of glass.
In principle, Griffith's energy balance concept is valid. It gives
the accurate functional relationship between the applied stress at frac-
ture and flaw size for brittle materials, and gives favorable comparisons
between predicted cohesive strength in defect free material and experi-
mentally determined strengths for single crystal whiskers. In practice,
Griffith's concept gives adequate approximations for ffacture analysis of
many engineering materials, however, difficulties are encountered when
the concept, developed for brittle materials, is applied to ductile
materia]s(S) due to the elusiveness of the value of the fracture energy

(6)

and to the lack of crack length sensitivity. Investigators of metal
fracture object that the Griffith concept represents an oversimplification
of a series of much more complicated phenomena in an age when there is

no need to resort to such a gross oversimplification. Many investigators
then turned to microscopic and atomic scale models with the development
of the Dislocation Theory in 1934. Through models of atomic stacking
faults, dislocation movement, twinning, etc. many features of metal
behavior were described.. These studies have produced valuable results,

including explanations of the development of sharp cracks in an initially

"flaw free" material (see Cottereﬂ»HuH(ﬂ)° At present these
studies are incomplete and a loop has not closed between dislocation

studies and a global eneray approach to fracture,
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In 1945, Orawaﬁ(g) reported that x-ray analysis showed extensive
plastic deformation on the fracture surfaces of materials which had
failed in "brittle fashion." Then in 1948, Irwin(g) pointed out that
the Griffith type eneray balance must be between the strain energy
stored in a specimen and the surface energy plus the work done in
plastic deformation. Further work by Orowan(8) elucidated the manner
of treating plastic deformations and demonstrated that the modified
Griffith condition for fracture is not only a necessary but also
a sufficient condition for crack propagation. It resulted that the
fracture eneray was the sum of the surface energy and the plastic work.

The stress criteria to.fracture has persisted. Stress field

(10)

expansions for crack tips given by Sneddon have been extended by

(11) 12)

Irwin and Williams< in general for any isotropic elastic body.

The Tocal stresses near the crack tin may be expressed in terms of
a parameter K which is designated the "Stress Intensity Factor,”

(1)

Irwin showed that for elastic materials the eneray approach is
equivalent to the stress intensity approach. Linear theory of elas-
ticity provides unique and single valued relationshins among stress,
strain, and enerqgy. Therefore, an energy fracture criterion has its
equivalent stress and strain criteria, all of which are mathematically

indistinauishable. For materials exhibiting plastic fiow, however,

such is not the case.

Analytical solutions have been develoned for elastic-plastic

(13).

materials in shear by Hult and McClintock For crack opening in

simple tension, approximate methods are beina used. For instance,

recently Foiias(14)9 usina the Duqdale(TS) model (a narrow band of

plastic deformation preceding the crack front) has successfully demon-

strated a manner in which plastic flow may be included in fracture




analyses of curved plates.

Returning to the eneray approach, a pattern begins to emerge.
There is nothing basically wrong with an eneray apnroach, but whereas
Griffith was able, in assuming brittle behavior, to balance the energy
interchange between elastic strain energy and surface enerqy, treat-
ment of non-brittle materials necessitates consideration of additional

(9)

dissinative eneragies. Irwin emphasized that all enerqy dissipated
as a fracture progresses, including that not directly related to the
formation of new surface area, must be considered. Within this frame-
work, it appears all materials may be included, even those with time
dependent material properties. For example, if one were to inquire

about application to viscoelastic materials, the major dissipative

mechanism is internal damping. 7
Many materials, including the organic polymers, exhibit complex

behavior. Frequently polymeric materials are described as being visco-
elastic at temperatures above their glassy transition temperature and

elastic below that transition temperature. Such generalizations can be
deceptive; for example, polymethyl-methacrylate (PMMA) and polystyrene
have glassy transition temperatures well above room temperature and are
frequently referred to as organic glasses. Fracture investigation for

(16) have shown

these materials, closely paralleling those in metals,
plastic flow work terms about 103 times greater than the surface energy.
Hence, energy considerations must include plastic work terms in the
glassy region of these, and probably most, polymeric materials. It

is not clear at the moment whether viscoplastic considerations must

also be carried through the transition regions for such materials.
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(17

Rivlin and Thomas ) in an extension of the Griffith theory pro-

pose that fracture impends when
S IR (1.1)

|

where T 1is a characteristic energy density

U elastic stored energy

crack area

A
and where the subscript | indicated no further work is done during the
interchange of stored energy to surface energy. Similar results were

(18) for initiation of an edge crack configuration. Rivlin

used by Berry
and Thomas were careful to emphasize that dissipation, other than surface
energy, could occur during the fracture process.

(19)

Williams observed that for a conservative system, the energy

balance consists of separating the energy input into its various output
components. In the simple brittle case considered by Griffith, the
deformations are all presumably elastic and the work put into the

system is dissipated or transferred into the work of creating new
surface. For a propagating crack, kinetic energy must also be
considered. For more comnlicated material behavior, appropriate
dissipative energy terms such as plastic work and viscoelastic
dissipation are included. Since these terms are all scalar energies, the

resulting critical stress may be expressed as
T T, (1.2)

where k is constant for the geometry considered, E is the material
modulus, a is the half crack length and ET; reflects the summation

of the dissipative processes in the material. For brittle, ductile,




and viscoelastic materials, respectively, one would insert Ty Td,

and Tv, For brittle materials, in which T, >> Td + Tv, one recovers
the Griffith relation.

Experimental evidence led to more careful consideration of the
dissipative mechanisms in viscoelastic fracture. In order to elucidate

(19) has

the viscoelastic dissipative influences on fracture, Williams
chosen a spherical flaw model which will be described more completely
later.

It was found that the critical stress was predictable in terms of
a geometric factor, viscoelastic compliances to account for
viscous dissipation, and the surface energy density. This is a particu-
larly significant contribution since the viscous dissipation enters
through a time and hence a Toad history dependence.

The spherical flaw model appeared to be such a convenient device
for exploring the implications of viscoelastic fracture that Williams

1.(20’ 21) utilized it in a study of isothermal cumulative damage.

et a
Certain parts of this study are offered in this thesis as contributions to
a better understanding of cumulative damage in a linearly viscoelastic
material.

More recently Noel, Burton and Harbert(zz)

have investigated
cumulative damage in a viscoelastic rocket fuel. Analyses were
extended using the spherical flaw model to predict propellant behavior
under a variety of loading histories. Their experimental results,
however, were somewhat clouded by the inapplicability of linear

viscoelastic constitutive relations to the solid propellant. The

implications of viscoelasticity are that loading and hence damage




effects decay with time or that the material displays a fading memory.

For the material studied, permanent damage was experienced. Continuum

mathematical models may be fitted to experimentally determined response

for composite materials. Such permanent damage is currently being consider-

ed in the development of more general constitutive relations by Farris.(23)
There are certain similarities to be noted between cohesive and

adhesive fracture. Analytical developments from continuum mechanics

describe stress singularities, albeit of different types, for crack

tips whether these cracks 1ie imbedded within a single material, or

along an interface between two materials. The energy approach neatly

circumvents the difficulties experienced in cohesive fracture analysis

and appears applicable to adhesive fracture analysis.

1.2 CONTINUUM APPROACH TO ADHESIVE FRACTURE

With the increasingly frequent use of adhesives to join dis-
similar materials, it is important to understand and to be able to
predict adhesive fracture. Adhesive fracture studies have ranged from
the atomic structure viewpoint through global energy balance based on
continuum mechanics. While the Tatter approach will be taken, it
is appropriate to review some of the results of atomic approaches.

Adhesion may be defined as the state in which the surfaces of two
materials are held together by interfacial forces. An adhesive is a
material or substance capable of holding materials together by surface
attachments. These definitions are quite general and often ambiguous.
For that matter, the term adhesive may not be necessary academically
since a thin film of material may affect adhesion with a material
surface on the one side, and also may affect adhesion with another

and possibly different material surface on the other side.




However, to remain consistent with the voluminous quantities of
1iterature on the subject, the above definitions will be used to
describe the state in which a material is held together by internal
forces. If a piece of material is pulled apart, these cohesive
forces must be overcome. If then, these pieces are physically
rejoined without intentionally introducing a binding medium
(adhesive), it is in a state of autoadhesion. If however, one of the
pieces is joined to a different material, then adhesion is said to
exist. It is easily envisioned that in the joining of two pieces of
material, surface roughness and contamination such as dust, air, or
0il, will 1influence the proximity of atoms across the interface, and

hence, if the forces are dependent upon proximity, the forces.
This indeed is the case. On the atomic scale, forces that have
been defined 1nc1ude:(24)
1) Primary bonds
a) Ionic bonds develop between the atoms of certain dis-
similar elements when one element possesses easily
detachable valence electrons and the other element
requires additional electrons to fill an electron shell.
b) Covalent bonds are said to exist when atoms of certain
elements have a tendency to share some of their valence
electrons.
c) Metallic bonds also result from sharing of valence
electrons, except these electrons may circulate freely
within the body, forming a kind of electron cloud that

holds the positively charged ions together in a close-

packed configuration.
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Secondary (intermolecular, Van der Waals) bonds

Even though the valency forces of atoms are saturated within

a molecule, molecules still attract each other with much

weaker forces. These forces, arising from permanent or

induced dipoles may be divided into three known groups.

The effects are named after the respective investigators.

a) The Keesom effect (also orientational effect)-~Attractive
forces may be observed between two molecules with

(26) found the energy

permanent dipole moments. Keesom
of attraction for two like molecules of dipole moment

u, is given by

4
v I (1.3)
Keesom 3K T r6
where k = Boltzmann constant
T = temperature

distance between molecules.

1]

r

For dissimilar molecules of dipole moments W and Wy

. 2
VARV u
. . o2 (1.4)

v :
Keesom 3 KT r6

b) The Debeye effect(27)—~Dur1ng experimental investigations
at relatively high temperatures, Debeye observed molecular
attractions that could not be attributed to the Keesom
effect. He concluded an additional attractive effect

existed and was the result of polarizing action or




c)

11

induced dipoles. The mutual attractive potential energy

for two Tike molecules was found to be

. _ou
VDebeye B 6 (1.5)

where o 1S the polarizability of the molecule. For two

different molecules, the expression becomes

2, 2
oo TR (1.6)

VDebeye r6

The London effect(28)—-London pointed out that if, instead
of considering the time average effect and considering
instead an instantaneous picture of the molecules,

various electronic configurations could exist. Thus,

for short time intervals, the molecules would possess
dipoles, which would act upon neighboring molecules and
induce dipoles in them. The consequence of such an
interaction is an attraction between molecules. London
found by a quantum mechanical treatment of the problem
that the mutual attractive potential energy was given

by the expression:

W
o
~~

.

.

~I
g

VLondon

1]

where h Plancks constant

the characteristic frequency of the molecule.

1]

v
O

For two molecules of polarizabiliities o, and o, and




3)
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characteristic frequencies v, and v, the expression

becomes

. (1.8)

VLondon

Another important conclusion reached by London was that
this effect is simply additive, i.e., the simultaneous
interaction of many molecules can simply be built up as
an additive superposition of single forces between pairs.
The London effect is always large in comparison to the
other effects mentioned and,except for the most polar
molecules, appears to predominate. ‘

(29) prefer to catagorize

Hydrogen bonding. Some authors
hydrogen bonding with Van der Waals forces, while others,
because of the significant role hydrogen bonding plays in
polymeric materials, prefer to treat it under a separate
heading. Whichever the case, hydrogen plays a somewhat
unique role since it can exist both as a positively charged
and as a negatively charged ion. The negative ion is formed
by imperfect shielding of the positively charged nucleus

by the single electron in a neutral atom. This imperfect
shielding will result in a constantly shifting dipole which
has a weak tendency to acquire another electron by purely
ionic attraction. This property of the hydrogen atom

enables it to bridge two negative ions, in what is known

as hydrogen bonding.
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The binding forces in elements and chemical compounds are usually
mixtures of the idealized types discussed above. To get a feel for

(24)

the contribution of each type bonding, it is interesting to note
that primary bonds usually have an energy of 2 to 10 electron volts
(ev)/atom, while the energy for hydrogen bonding is between 0.2 and
0.5 ev/atom and for secondary or Van der Waals bonding is 0.02 to
02. ev/atom.

More detailed discussions of the binding forces and adhesion

(30) (29)

in general are found in texts by Houwink and Salomon and by Patrick.
A necessary part of the approach for establishing strong bond joints
and for developing good adhesion is a study of atomic and chemical inter-
actions. However, the gap has rot been bridged so thaf atomic scale
models can be used quantitatively for fracture analysis. Although
relating of microscopic force interactions to macroscopic fracture would

be an important contribution, the author has chosen a simpler approach

by considering the continuum representation

(31) that from the viewpoint

It has been pointed out by Williams,
of continuum mechanics, and particularly the energy concept of fracture,
adhesive and cohesive failures are similar. The essential difference
involves the interpretation of the energy required to create new
(adhesive or cohesive) surface area. It is recognized that technical
adhesive interfaces as well as real materials contain flaws, and that
these flaws (sharp geometric discontinuities) give rise to mathematical
stress singularities.

Consider, for example, a crack of finite length, 2a, centrally

Tocated in a large sheet, say along the x-axis. If the material

above and below the axis is the same, this becomes the Griffith problem
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with stress singularities at x = + a. Now consider the material in
the upper half plane to be incompressible and the material in the
Tower half plane to be rigid and then assume perfect adhesion over
|x| > a. Again the stresses at the crack ends, x = + a, are
singular. In the first case the Griffith energy approach, involving
integration of the stress squared over the area of the specimen,
provides the solution to a well known and classical example of
cohesive fracture. The second case is an example of perfect
adhesive fracture. Suffice it to say just now that for an edge-
bonded specimen having a central finite crack at the interface
with a rigid boundary, a stress analysis can be conducted and the
incremental new surface enerqy generated can be calculated as the crack
extends.

In addressing adhesion problems, it is necessary to inquire which

(32)

problems have integrable stress singularities. Williams has

(33)

defined certain cases, and Malyshev and Salganik referring to

these descriptions have run tests to evaluate surface energies for the

(34)

bond of PMMA to steel. Earlier Dannenberg forced mercury between
a polymeric coating and a stiff plate to determine the work necessary
to debond a fixed area, wut did not discuss the strain energy balance.

(31) has shown the singularity for a crack

More recént]y, Williams
tip being precisely along the interface between a rigid material
(E » =) and an incompressible material (v = 0.5) is well behaved
(i.e., integrable), and further has suggested a pressurized blister

configuration as a convenient means of measuring adhesive surface

energy density. Using the blister configuration, the author has
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conducted a number of tests. These tests and certain analyses
will be described later.

...... 4

The various dissipative mechanisms have been discussed ai

A s L e o s o o
uorererernues

cited for the manner of including these mechanisms into an energy balance.
Simplified geometries have been mentioned that reduce the mathematical
complexity of the problems so that attention may be focused on the influence
of material behavior. While microscopic and atomic scale studies are
necessary for complete understanding of fracture phenomena, the value

of single parameter fracture criteria can not be disputed. Using the

energy balance on continua, such fracture relations will be developed

for certain cases of cohesive viscoelastic fracture and elastic

adhesive fracture.




IT.

THE SPHERICAL/CYLINDRICAL FLAW APPROACH TO COHESIVE FRACTURE

The stress intensity factor approach to fracture has shown some

very interesti

singularities.

ng features about the analytical treatment of stress

For a large class of problems, it has been shown

that the stresses near a singularity are expressed by(]])
K
o, = —2 (o) (2.1)
' VZnr '

where o | (r, 8) are the various stress components at a distance r

from crack tip and an angle & from crack plane.

Ky

For an elastic body, Irwin

stress intensity factor for crack opening mode, |.
(1) has shown an equivalence be-
tween the stress intensity factor approach and the energy rate

approach from which he arrives at an energy rate,s;

2

Y _ K -

€51" A = _%_ plane stress (2.2)
fixed grips
(- kS
Sf E - plane strain (2.3)
and further, for complex loading conditions;

S 1= K2+ K2+ LEv 2 (2.4)

) E I 11 E 117 .

where KII and KIII are stress intensity factors
tearing modes respectively.

just impends or at criticality, the energy rate

for edge sliding and

But when the Toads are such that fracture

term is recognizable from
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the enerqy balance relations previously described as the rate of doing

surface work with surface area. Surface work may also be described as

SE = .j. vy dA (2.5)
C
(@]
where Yo F surface work/unit area
A = surface area

then, at the critical load for crack growth

d _ -
T (SB) =y = G (2.6)

It can be shown for the classical Griffith problem of a

centrally Tlocated crack in an infinite sheet loaded by simple

tension that
K
Yoo T ZE (2.7)
where the cr-subscript on the stress intensity factor indicates
criticality, and c-subscript on the surface work density term denotes
cohesive fracture.

The critical stress intensity factor is then recognizable as a
material property. But from the stress intensity factor approach,
the relation of this factor to the Toad imposed far from the crack,
and the crack and body geometry can be expressed.

While there is yet to be a completely unified cataloguing of

stress intensity factors, many are listed by Paris and sin25) g

shown by McClintock and Argonm(ZQ) Several of these are Tlisted 1in
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Table 1. The inference drawn by Williams is that because the geometric
contributions are separable from the material properties, e.g.,

the stress intensity factor is a material property, influences of ma-
terial properties changes can be studied using the most simple avail-
able geometry, then results extended to other configurations using
the appropriate geometric factors. In pursuit of this approach, it
became apparent one of the simplest geometries is a sphere of outer
radius, b, containing a concentric spherical flaw of radius a. For
uniform loading or displacements of the outer boundary, it is seen
that the problem is one dimensional in radius r. Fracture is assumed
to take place uniformly around the surface of the spherical flaw
(radius a). Physically, this fracture surface configuration is highly
improbable, but would more than likely be a ring extending from the

(36)

spherical surface similar to attached Saturn rings; however, if

the stress intensity interpretation may be extended, the physically
observable fracture surface development could be analytically described
using the appropriate geometric factor, thence the assumed uniform

spherical fracture surface extension is valid for studying the

phenomenological influence of material behavior on fracture.

9.1 SPHERICAL FLAW IN VISOCELASTIC MEDIA

Fracture criticality conditions for a spherical flaw in a linear
viscoelastic incompressible material have been calculated for a number
of loading conditions.(]g) It will be informative to review a few
of these developments and results.

For stress boundary conditions, the energy balance conditions

are satisfied by
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002 T 5 £ BDcr (E-1) .
53 { - — J‘ S(g) =— [D S(&) + f -——-————p——————S(T)df] de + 2ay = 0
o %t 7 g o)

a4 3(E~-T)
(2.8)
where o, = normalized stress applied at outer boundary
a = vradius of flaw
g,T,t = time variables
% = glassy compliance
(+) = creep compliance
crp
vy = cohesive fracture energy per unit area.
3
S(H) = _% a” (t) f(h)
l _[aéf)]S
(2.9)
g(t) = o f()
o]

It is noted that equation (2.8) is satisfied for no fracture,
i.e., &= 0 and also when the bracketed term is zero. Both terms
are useful in determining criticality conditions.

Using the bracketed term of equation (2.8) for a step applied

stress (o(t) = 7, for + = 0) it is found that

SR N —
o 3¥al(2b (+t) -D)
o “Tecrp o g

(2.10)

a
where 5 << l.

This demonstrates that for a constant surface energy, the




critical stress decays with time, with the upper Timit occurring as
the time after load application, Tos approaches zero. As t, > 0,

, it is found that

. o
then DC p(+o) +7D9. Since D9 =

r

Thus, if astep stress less than oécgwere applied, one would expect
failure to occur at some finite length of time, as Tong as that
applied stress is greater than the lower limit that corresponds to
the rubbery modulus (i.e., equation (2.10) with Dcrp > E&' for

very long times).

For displacement boundary conditions the energy balance yields

2 £
6 su + 3k (g-1)
. _4b ¢ 39 rel
a {Zay —-—a4 <——b>£ 3t [Egg(i) + JC; oo g(r)dT}dg }

(2.1
where u(t) = uog(t), the aoplied displacement

1]

u normalized radial boundary displacement

O
Eg = glassy modulus
E_ () = relaxation modulus

rel
For a step displacement imposed upon the spherical geometry, i

is found that

cr g o

20

=0

1)

t

e (a,t) =g—1C (2.12)
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or that the critical tangential strain at the flaw is independent of
time as long as the surface energy density is constant.

For constant strain rate loadings, one finds that

- Y
ey (a,t) = ‘/ 2] (2.13)

cr (+)
2a

rel o
o 2

where TO - time to failure

+o -
(2) B
Ere[ (TO) = .£ .£ Erel(g) dg
It has been shown that(zo)
E(zi (+)
2__‘:(?.__2__9_ x F (+ ) (2.14)
+ rei o
o
So then
Y
N c
86 (a,T) —a-——E——'—(—'_F—-)— (2.]5)
cr o rel ‘o

which, of course, reduces to the step Toad solution as TO -0,

Ere(Ty) ™ Eg. Interestingly enough, the critical strain increases

Y . .
with time to an upper limit of g It is curious that, for the
o r
relation of critical strain to allowable mechanical properties suggested

by WiTliams19)

there is no allowance for subsequent decay for in-
creasing time, unless the surface energy density is also a function

of time, or unless there are peripheral changes (such as aging) that
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cause Er to increase.
Fracture kinetics may also be studied from this approach.

Setting the bracketed portion of equation (2.8) to zero yields the

(37)

propagating flaw solution, namely

/5
6 /u 2 (T &€ E__ (&-1)
_)2b o 3agleg) rel
o] o]
(2.16 a)

or alternately

/5

6 /u N2 (F £ 9g(T)
_J2b o 9g(g) E (E-~1)dtdg
alt) = {—T—-—<—b——-) f —5E f 3T rel }
O o) -

(2.16 b)

Until the initiation of failure the flaw does not increase in size,
i.e. , a(f) = a, which means that the stationary flaw solution is
satisfied. After initiation the flaw will increase in size. Provided
the rate of flaw growth is small, the propagating solution equation
(2.16 a) or (2.16 b) must be satisfied. At the point of initiation,
however, both the stationary and the propagating solutions must be

satisfied hence from equation (2.8), failure initiation occurs where

6 2 + £
T (% b _ f 3g(8) 3g( 1)
— <E7'> <‘U‘> __~f ot Jﬁ 90 £ (e-n)dude
O O o o

where Tf is the time to failure.

Evaluation of equation (2.17) for the simple loading functions

(2.17)

can readily be done and some examples have been mentioned.
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In most problems involving linear systems or materials the

solution for the simple loading functions is all that is required.

By the superposition principle the solution when the loading function
is several simple loading functions applied simultaneously is simply
the sum of the 'solutions taking each loading function individually.
In most linear problems the response to an arbitrary loading function
can be obtained from the response to a unit step function by appli-
cation of the Duhamel Integral. In the formulation of the fracture
problem, however, energy which is a function of the square of the
loading function is involved so that these simplifying principles

do not apply, hence it is necessary to consider these more compli-

cated loading functions in greater detail.

2.2 [LOADING FUNCTIONS WHICH ARE SUMS OF SIMPLE LOADING FUNCTIONS

Consider the situation where g(+) = g () + g, (+) + g, (+) + ...
| 2 93

+ g, (1) Equation (2.17) then becomes

EEE) L

e}

n

£ g,
Lo [ # ]
i — (&-1)|dr|dg
[|=I 5T b= 3T rel

@]

2.18)

Note that the solution includes the sum of the individual solutions
considered separately and every possible combination of simple Toading
functions taken two at a time. Parenthetically, review of the equa-
tion predicts that the sequence of application of these simple loadings

has no effect on the final result.
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2.3 CYCLIC FATIGUE - SPHERICAL FLAW/CYLINDRICAL FLAW ANALYSIS

o

As an example of this general type loading, consider the case of

5

sinusoidal loading with a superimposed preload which is suddenly

applied. For this case

ulb,t) = u gty = upu<+> + ou sin wt (2.19)
hence
u
g, () = =+ uh
(@]
and
gZ(T) = sin wf

It is further assumed that the Prony series representation for the

relaxation modulus is adequate. Equation (2.17) may be evaluated to

T a, 6 b 2 up 2 up n W, EE_
Za, (r) (r;;) = <r> R 2 g Bt P Egsinut

o o i=| [+w T’ o)

22

u W, —Tf/Ti
U_ 2: < " > E. e (wr, sin wte-cos whp)
W',

E, on Wt wt sin 2wt
+ -A—r— (["COS Zuﬂ‘f) + .z—: <"—2——2> EI > + 7
i=1 \ I+w TI

i 70 i [
+ —> (e cos wa - 1) - — 5 (e sin wa)
I+w T I+w Ti

wr . ~-t./T. wT, —Tf/r. ]

(2.20)




25

It will be noted that the first term on the right side of

, is simply the result for a

. PR . , 2
equation (2.20), i.e., (up/uo) »Eg
suddenly applied constant displacement and the final two terms are

those due to the sinusoidal loading leaving for the "cross terms."

u n wr, —Tf/ri
—p—Ee sin uﬁr + EE' 2:: < 5 2>Ei | +e (uo'ci sin uan-cos un”f)

e} o) I+ T

(2.21)

The results are illustrated in Figure 1, where equation (2.20) is
plotted for both pure sinusoidal loading (up = 0) and sinusoidal
superimposed upon a preload. It will be noted that failure will
initiate in the sinusoidal-with-preload case before it will in the
pure sinusoidal case.(Z])
We can consider the response to a sinusoidal displacement for
a three-element model and express the result in terms of the Tocal
strain at the internal flaw where N is the number of cycles to
failure. One deduces easily, therefore, a characteristic fatigue

K9 Showing the usual degradation of

curve behavior !€¢(a)l =
life, i.e., strain at failure, with an increasing number of cycles,
but furthevmore, that the proportionality factor distinct from
metals--is frequency dependent.

In order to study this further, consider equation (2.20) with
the cyclic terms removed, for a three-element model such that

E, = 9900, E_ = 100, £ = 1.0 sec., (u /u) = 1.0, then
e p’ o
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2 2
X <___L-> = 10,025 + 9,900 ~2— + 9 9004
22 \&, (& o (,+w2)(

(2.22)

The general trend of allowable strain versus the number of cycles is
shown for various frequencies in Figure 2. It is interesting to note
that the number of cycles to failure (or fatigue life) is smallest

at a frequency that corresponds to the peak of the low modulus

curve, while at very low, or very high frequencies a much Tonger
fatigue life is predicted. Equation (2.20) can be simplified for
long times (so that the exponentials are negligibly small) and by
substitution of the complex moduli for the Prony series. Rearranging

it is then found that

eglaty) = - (2.23)

2
u u .
‘/<~R> E +e'" (w (nN+ ~p> po BB L),
u g uO 2 dw

O

Further simplification can readily be made, and is shown in a
parallel development for the cylindrical flaw.

Consider a plane-stress circular plate subject to displacement
boundary conditions and having a cylindrical flaw in the center.
Following the energy balance shown in Reference (19), it is found

hat(ag)

t the equation representing the energy is




27

A o ‘ 4 BEr"ef(ng) -
adly = S(g) {i5<a> E +j® MWMTMMWTKWMS(T)dT} dg
320 (4) 9 alE-T
G @]
o (g -7)
- 4a(+>J‘ P(e) | Pe) E +f a(g P(r)dt [ dE S =0
O
° (2.24)
where

201 = k%)

3 g(&j)otaoz

S(E) = - ? >

| - ok

now letting g(+) = u*(+) + U sin wt, where u*(t+) is a unit step
function. The solution, assuming a(TC) = a, at the time of fracture

initiation, is as follows:

u
%% MYE
b( 14+3k2) N7 VELP,D (2.25 a)

where
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2
U u, u, W =t/
FOL,P, 1) = (U‘> £, g Eg Sin uf + U—Z(———Z 2>Ei [He
o) e} o I+w T
Ee
(wri sin wt - cos qu~+-—Z (l-cos 2 wh)
wT. .
- i wt sin 2 wt
¥ Ei{ 77 <_2 +"‘"'4_—>
| +w Ti
wZTiz < —JF/Ti > wBTIB < —1‘/Ti >
4 ————e—— e cos wt-1 - —— e sin ot
(|+(,\)2Ti2)2 (!+w21i2)2
2 2
w T,
+___é__2— (1 - cos 2 wh)
401+, (2.25 b)
which for relatively long times reduces to
U
Ocr _ I Y/ao
2, — (2.26)
b( 1+3Kk%) 2\/3 L 2 ]
<_g) 9E ' ()
u
O

E +E“<w)<ﬂN+—B)+9
u 2

g dw

@]

This relation has turned out to be, as expected, quite Tike that
developed for the spherical flaw, differing only by the geometric
constants.

Consider now the rearrangement of equation (2.26) for the pur-
pose of more clearly defining the factors that influence the fatigue

lTife, N, for a linearly viscoelastic material.
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o 2
Y/a, (b I+3Kk™)

NP, _w M*(U_e) .
g mE T (w) 8 (u y2 2 dw U g
®crit.

(2.27)

The only quantities that vary with frequency are E''(w) and
w OE'(w) w 3E"(w

5 m The relation is simplified by recognizing 5 0 is
small in comparison to Eg, then
N Y A+ o (2.28)
EVNw :

thus for large values of E'', the number of cycles to failure, N, will
be small, or for small values of E'' then N becomes larger. And for
E'(w) - 0 (as for a perfectly elastic material) the number of qyc]esv
to failure is predicted to become infinite.

Such pehavior has not been observed since perfectly elastic
materials have not been observed. On the other hand, it has been
observed that elasto-plastic materials have an increasing tendency
to fatigue as they are loaded further into the plastic region. In

(39)

an empirical study, Coffin has shown that the relationship

Nl/2 A &y ~ C fits the behavior for a wide variety of materials where

A € is the plastic strain and C is a constant.

2.4 CYCLIC FATIGUE - CYLINDRICAL FLAW TESTS
2.4.1 Test Apparatus and Procedure
In order to experimentally verify the theoretical relations for

the cylindrical flaw previously mentioned, a simple tension fatigue
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used“(go)

test was Scope of testing included demonstration of

\ : S N5 - --‘1-, ~
tite (::‘EIU(:‘lt‘UI

a) fatigue p frequency, and

b) the influence of Toading sequence.
A well characterized material, GALCIT I was used in these tests.
Particular care was exercised to prevent solvent and moisture
exposure. Material stock and prepared samples were stored in
dessicators until immediately prior to testing.

Individual specimens were cut to dimensions shown in Figure 3.
Size and orientation of the flaw is highly critical. A slight varia-
tion from the established standard in flaw size, for example, would
subsequently cause bad or erratic data scatter during tests.

A good deal of care was taken in making the initial flaw or
crack uniform from specimen to specimen. A 1/32" hole was milled in
the middle of each specimen to minimize tearing when the crack was
cut into the specimen. The specimens were cut with a specially made,
finely polished blade 0.0625 inches in width. Each specimen was placed
in a holding fixture and the blade passed through the milled hole,
perpendicular to the sides of the specimen. The flaw dimensions were
chosen so that the stress intensity factor for a cracked plate could
be used.(4])

2.4.1.1 Apparatus

The test machine viewed in Figure 4 was basically a slider crank
mechanism driven by a 12 volt shunt wound DC motor. The field wind-

ings and armature were excited by separate regulated DC.power supplies.

*
50/50 mixture solithane 113 and castor oil, furnished courtesy
Dr. R. Landel, California Institute of Technology.




The nature of the study required that the tests be run at two
frequencies, consequently a third power supply was connected to be
used interchangeab1y with the armature power supply. One was set
at the lower frequency and the second was set at the higher frequency.
The switching was accomplished with the application of a simple
double pole, double throw switch. During frequency change and motor
stabilization, only about 20 revolutions occurred. It was determined
that ZQ revolutions has essentially no effect and could be considered
negligible when compared to toté1 cycles required to reach failure in
any of the tests being carried on.

Specimens were held by clamp type jaws as shown in Figure 4.
Sandpaper was glued on the jaw faces to prevent slippage within the
jaws which were made especially for the tests. The jaws were designed
to hold firmly but not cause warpage or undue stress around the crack
area.

As illustrated in Figure 4, the initial prestrain was applied by
use on an adjustable eccentric on the top of the machine. The
sinusoidal Toading was developed through the crack which had a 0.05 dinch

offset. The resulting strain was as follows:
gty = up(u*(T)) + .05 sin wt

where u*(t+) is a unit step function.

In all tests referred to in this work, v, was set at 0.35".
Recognizing initial failure of the crack tip was critical to the

study and difficult to accomplish. During the tests specimens were

vibrated at frequencies ranging between 50 and 6,000 cycles per
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minute. Initial failure was invisible to the naked eye. A strobe
light was employed both to monitor the frequency and to serve as a
light source focused on the crack. When the light was directed
through the specimen at an angle of about 20° from the horizontal, the
fracture surface appeared as a silvery line at the apex of the crack.

A microscope fitted with a special lens was used for detection of
the initial failure. The special adaptation of the microscope made it
possible to focus on the specimen from a point about two feet from
the specimen during the test. The modified microscope provided magni-
fication approximating 20x.

The combined use of the strobe Tight and the microscope made it
possible to see the fracture before it had grown beyond 0.001
inch, which was considered satisfactory for the purposes of the study.
Figure 5 illustrates the relative position of the strobe, the specimen,
and the microscope.

The number of cycles the specimen had been subjected to was re-
corded on an Altec digital counter. Reliable triggering was obtained
by use of a photoresistor, and a mirror attached to the rotating motor
shaft.

2.4,.1.2 Procedure

A specimen to be tested first had a crack precut in it. It was
next mounted in the test device and run at constant frequency until
failure. After fracture initiation, flaw size was monitored.
Characteristic flaw growth rate data are shown in Figure 6. For the
dual frequency or sequential test the specimen was run at one

frequency for approximately half the previously estimated falure time
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at that frequency. The motor was then switched to the second power
supply for the other frequency until failure was noted.

Three specimen were tested in one sequence and then an additional

three were tested with the order of the frequencies reversed. The samples

were numbered and the crack growth that occurred was measured.

When a specimen is being fractured, any interruption in the
fracture growth will cause a line or leave-off mark to appear across
the fracture surface. It was found that when the specimens were
quickly pulled or jerked apart, the leave-off mark was clearly
discernible. Test crack growth was measured under a 40x microscope
and recorded. The results are shown in Tables 2 and 3.

Temperature increases were detected during this series of tests
and subsequent tests were instrumented in an attempt to accurately
measure those temperatures at the apex of the crack.

A thermistor was used to measure the temperature change antici-
pated to be in the 80° to 120°F range. A thermistor with 0.001 inch

leads and a 0.007 inch uncovered bead was potted onto the surface

near the apex of the crack with Solithane. After the Solithane

had polymerized, the sample was tested and the output of the thermistor

monitored. This procedure gave very good results as shown in Figure

7.

The analytical description of this heating problem is complicated.

However, by making simpiifying assumptions, a qualitative description

of the temperature rise may be given and the complexity of the problem

illustrated.
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2.4.2 Heat Transfer Analysis
Let us consider an infinite sheet of linearly viscoelastic
material subjected to strain cycling at a frequency w. It is found

that using the complex modulus representation E*(w) = E'(w) + iE'"'(w)
i wt

where ¢ = e e s
e}
uttt = ZErt(y) e 2 (2.29)
2 o) '
where u''' = energy dissipation density per unit time
E'' (w) = "Toss modulus"

I

e strain half amplitude

O

Now suppose that the sheet of material, infinite in length and
width, but of thickness, 2L, is cooled by corvective heat transfer

on the faces |x| = L (where x is measured from the midplane of the

sheet). Then it is a matter of setting up an energy balance or

Heat dissipated = Heat stored - Heat fransferred (2.30)

Differentiation of the energy balance with time and rearranging

gives
d . T
a - Tt = - = - o
] fo pCTdx u L q, < = (2.31)
x=L
where o = material density
c = specific heat
k = thermal conductivity

qp, = rate of convective heat transfer
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If the energy dissipation rate, u''", were independent of tempera-
ture, T, and space, x, the equation is linear and is easily solved.
However, u''' is proportional to the Toss modulus and the square of
the imposed strain. For linear viscoelastic materials the loss
modulus in turn is temperature (and thus space) dependent and the
strain can also in particular problems be space and temperature de-
pendent. When each of these terms is fully developed and of such
magnitude so that they are not negligible, coupling exists between
the heat transfer equations and the stress/strain field equations.

The term thermo-mechanical coupling is then applicable.

For the time being, however, let us assume, somewhat artificially,

that the energy dissipation rate, u''' is independent of temperature
and space. Then the solution for equation (2.31) 15(42)
_3ht
hi

T(x, 1) = T_ | 2 o pCL(=—= + 3)

—_— = —2—[[——2-+-H-—L—}|:l"e « (2'32)

U”' L /K L
where h = convective film coefficient

T = jnitial sample and environmental temperature

(e8]

or rearranging

2 2 -t/
- I B 2 _X L2k - '
T(x,T) T, [4 - E'' (w) Eo:| [l LZ + hL:‘ [| e :]

where T, =
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The first bracketed term on the right hand side of equation
(2.33) indicates the magnitude of the temperature rise to be propor-
tional to the Toss modulus and the square of the imposed strain. The
second bracketed term shows the temperature distribution through the
thickness of the sheet to be parabolic. But for thin sheets or where
%% >> | - 5;-, the temperature may be considered constant through the
sheet. InLthe experimental tests previously described, L = 0.05 in.,
¢ = 1.5 Btu in./hr £1° °F and h = 1.0 Bfu/hr £+° °F and 2¥/hL * 60
thus the temperature gradient is negligible.

Then from the last term, the term T is identified as the time
constant, and indicates the rapidity with which the temperature
rises. For very long times, i.e., steady state, this term is unity.

Thus, for application to the simple tension fatigue test, inas-

much as the one dimensional-constant heat dissipation rate assumptions

are valid, the expected sample temperature could be approximated by

2 T/T
- w L7y 2 _ I
TCH = T+ 2 —E'"(w e [ I - e ] (2.34)
Now it is appropriate to re-examine the assumptions regarding the
energy dissipation rate. Fortunately, for the particular case at

hand, the temperature variation through the thickness is negligibly

small, then it is concluded that the strain is independent of space

(i de _ de dT
T-€.5 g% ar dx

is not so easily disposable. The variations of E''(w) with tempera-

=0 ). However, the influence of temperature

ture may be seen by reviewing the variations of log ap Versus

temperature (Figure 8) and then associating w with way - Loss modulus
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: - - (43)

Versus wa, data for GALCIT Tare shown in Figure 9.

The effect of a temperature increase is to slide the curve to
the right. Thus, for frequencies left of the curve peak, increases
in temperature effect a reduction in E''(wa,). The estimated result
is reflected in comparison with predicted values, using constant
Toss modulus in Figure 10. It is noted that the equilibrium tempera-
ture is less than that predicted using the initial, but constant
value for E''(w).

But if, on the other hand, an excitation frequency greater than
that corresponding to the curve peak were imposed, the result is
estimated to be quite different. The loss modulus versus frequency
curve again shifts to the right with increasing temperature, but
the effect is now to increase the Toss modulus. Then the resulting
sheet temperatures would be greater than those predicted using the
initial Toss modulus value.

Now examine the effect of the variation of E''(w) with tempera-
ture on fatigue life. From the c¢ylindrical flaw model, it was noted
that

5 B
Ne = A ey (2.28)

But now, due to the manner in which E''(w) varies with w,
fatigue 1ife (Nf) may be estimated versus v as shown in Figure 11.

If constant frequencies left of the valley in the curve are
imposed, increasing temperatures again slide the curve to the right,
and the predicted fatigue life may be visualized as a magnetic bead

that remains at the intevsection of the sliding curve and the vertical
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line corresponding to the imposed frequency. Then N{ heated

Ny i cothermal’ Using again the same analogy on the right hand

portion of the curve, it is estimated that N, .

Nf isothermal *
Before getting too far afield with these deseriptions, let

us go back and critically review what has been done. First of all,
the coupling between E''(w) and temperature has not been properly
incorporated into the energy balance relations for the transient
heating problem, nor for the fracture criticality conditions.
Secondly, fracture criticality predictions were made assuming the
surface work term independent of temperature and time. This
assumption is also suspect, and will be discussed 1éter.

Thus at the most, the foregoing discussion must be qualitative
with the accuracy of reasoning to be assessed upon examination of

experimental test results.
2.4.3 Discussion of Data

To demonstrate that the fatigue life for this viscoelastic
material is frequency dependent, constant frequency tests were run
at several frequencies. The resulting data are shown in Table 2.

It is noted that the number of cycles to failure increases
with the test frequency; but since the loss modulus monotonically
increases with frequency in the range of test frequency imposed
(Figure 9), the analytically predicted fatigue 1ife (equation (2.28))
diminishes with increasing frequency. Although fatigue 1ife of

viscoelastic material is frequency dependent, in these simple tests
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this dependence is masked by the sample temperature rise. Just to
check this out, air from an electric fan was directed on some
additional samples during test to promote convective cooling and these
samples failed at s1ightly lower number of cycles. These data points
are indicated by A's in Figure 12. Temperature changes resulting from
the viscous energy dissipation are important and analytical predic-
tions conceming fatigue life will be incorrect if these changes are
neglected. Temperatures were measured on subsequent test samples.
Samples tested at 500 cpm experienced temperature change from 70°F

at the beginning of the test to 76°F at fracture. At a frequency of
1000 cpm the temperature rose to 78.5°F and at a frequency of

5000 cpm the temperature rose to 98°F. These measufements were somewhat
erratic since the thermisters used to measure the temperature were not
always placed over the hottest spot, which incidentally was not at

the apex of the crack.

Dual-frequency tests were run to investigate the analytical pre-
diction that reversing the sequence of loading does not affect the
fatigue Tife. The test data are shown in Table 4. The extreme right
hand column of Table 4 shows the percentage difference in fatigue
life accuracy as a result of reversing the order or the sequence of
loading. The positive difference in this column indicates the fail-
ure occurred in fewer total cycles in tests where the higher frequency
was applied first in the testing sequence. A percentage difference
of zero would indicate no effect attributable to loading sequence.

A negative percentage difference would have indicated the reverse of

what the tests showed. If the assumption of isothermal testing were
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valid, these results would be contrary to the fatigue theory pre-
viously developed. However, the temperature does change and the
manner of change depends on Toading sequence. This is graphically
illustrated by Figure 6. These results show markedly more rapid
temperature increase at higher frequencies than at lower frequencies.
This is in basic agreement with the simple heat transfer analysis
previously described. The qualitative assessment of the heating

effects also appears valid since N Note

f heated ~ 'f isothermal’
is also made that a good approximation to the heat trasnfer equations
can be made using numerical techniques. By itteratively readjusting

the Toss modulus with temperature (equation 2.34) for long times

through use of the frequency-temperature shift factbr, equiTibrium
temperatures in an infinite sheet can be approximated. This would

be important to the quantitative evaluation of these tests; however,

it is considered beyond the scope of this study for the following
reasons.

First, because of the crack, a non-uniform strain distribution
exists that give rise to a special dependent temperature and thus
modulus. The departure from Hombgeneity makes this a thermomechanically
coupled problem, complex in its own right and worthy of a separate
study.

Secondly, temperatures at the apex of the crack would seem to be
very important. Brief infrared examination of a fatiguing specimen
shows the area immediately adjacent the crack apex to be cooler than

most of the rest of the specimen. This seems due to the opening and

closing of the crack under cyclic loading, rapidly pumping of air in
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out, which locally cools the crack surfaces. The thermal field
equations in the neighborhood of the crack tip can then no longer
be considered one dimensional (through the thickness), thus further
complicating the problem.

These features are included in recommendations for further

study.

8.4.4 Fracture Surface Examinations

The fracture surfaces, resulting from the cyclic fatigue of the
GALCIT I specimen previously described, were examined using optical
and electron microscopes. Some of the techniques used for examination
and the more significant features observed will be briefly discussed.

The rubber fracture surfaces displayed many features similar to
those observed from metal fracture surfaces, hence, much of the
terminology and nomenclature used by metallurgists will be adopted.

Optical microscopic examination was conducted for a large number
of fatigue fractured spetimen, both using transmitted and reflected
light. Transmitted light showed more surface definition. Various
colored filters were also tried, but were not effective in enhancing
contrast of the surface features. Magnifications between 50x and
200x showed a moderate amount of detail. At magnifications above
200x the fracture surface was so irregular, large portions of the
field of view were out of focus. Therefore, most of the examinations
were performed at the lower magnifications.

One of the most characteristic features of the fatigue fracture
surfaces was the striped or striated appearance (shown in Figure 13).

The lines appeared perpendicular to the direction of progressive flaw
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extension. The spacing between these lines was very small near the
original flaw and became progressively larger as the flaw size in-
creased. The spacing also changed with the frequency of testing;
small spacing corresponded to high frequencies and Targer spacing
corresponded to lower frequencies. Interrupted cyclic tests and

dual frequency tests demonstrated a one to one correspondence be-
tween the number of cycles imposed and the number of striations
observed. The growth history of the flaw appeared to be start-stop
by nature, and at each new start a tell-tale line or striation was
left as a record of the fracture front location. The flaw growth

for each cycle can easily be determined by direct measurement of the
distances between the striations. The influence of frequency on the
spacing between striations is shown in Figure 14. A cyclic displace-
ment was imposed at a frequency of 90 cpm, then quickly the frequency
of this displacement was increased to 280 cpm also for 50 cycles,

and so on. The photograph (Figure 14) was taken intentionally
slightly out of focus to show the gross effect of the dual-frequencies
jmposed. Readjustment of the focus shows the 50 striations within
each of . the broad bands.

It is also noted from Figure 1 that the fracture surface did not
progress along the same plane, but rather on a "split level". The
junctures between these different levels was approximately parallel
to the direction of fracture propagation and are called river mark-
ings. Frequently these river markings join so the step between
levels of the fracture surface is greater. These different levels

seem to stem from the cut surface of the original flaw and special
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care was taken to make the original flaw cut uniform such that all
fracture progressed on the same plane, but this was not accomplished.

A small area of the fracture surface near the initial flaw
was examined using a transmission electron microscope. A two-stage
carbon replica was made of the fracture surface using acetate tape
softened by acetone, then by vapor-depositing carbon and then
shadowing with gevmanium. This technique leaves much to be desired
since the acetone swells the GALCIT I sample. A photograph of the
replica taken at 13,500x is shown in Figure 15 and the poor quality
of the replica is noted. However, the dark lines corresponding to
the fatigue striations can be seen. Carbon collapse along these
lines indicate a large step between adjacent planes. There also
appears to be a faint line midway between the striations, but perhaps
too much credence should not be placed in the replica.

Several other replicating techniques were unsuccessfully attempted.
It appeared a more efficious approach was direct examination of the
surfaces using a scanning electron microscope.

Sample preparation for the scanning electron microscope involves
vapor depositing a thin (1003) gold coating over the specimen and
introducing it directly into the microscope.

Two specimen were examined with the scanning microscope. One
specimen of GALCIT I was fractured in simple tension. The fracture
surface, shown in Figure 16, clearly shows the river markings.
Curiously, however, the ribbed appearing river markings are almost

perpendicular to the gross over-all divection of fracture propagation
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indicating Tocal fracture front propagations quite different from

the gross fracture front movement. Such Tocal perturbations introduce
errors in gross fracture predictions. This appears to be a fruitful
area for further investigation.

The second specimen examined, shown in Fiqure 17, was loaded by
cyclic disp]acement for 1000 cycles at a frequency of 3000 cpm. This
specimen was fabricated and tested as the other fatigue specimen, except
that =~ for the number of cycles imposed, fracture should not have
initiated. Other investigators of fatigue have postulated that
fracture initiates on the first cycle and propagates such a small
distance on that and subsequent cycles that it is frequently un-
noticed until it has propagated a macroscopically measurable distance.
The corresponding number of cycles is then denoted as the fatigue life
for the particular imposed strain level. It is easy to envision that
the flaw may grow a certain distance before its extension is visually
detected, but not so readily apparent, in view of the analytical
predictions, that the fracture initiation occurs on the very first
cycle. So this specimen was loaded to over 90% of its expected
fatigue Tlife, remerd from the fatigue apparatus, manually pulled
apart, then examined. The photograph shown in Figure 17 illustrates
the river markings tear lines characteristic of the manual tensile
fracture, but does not portray any features of fatigue fracture.
Admittedly, repeated examination can be made at higher magnifications
for additional specimen with accumulated cycles progressively nearer
their fatigue Tlife until finally fatigue fracture features are ob-

served. Perhaps a more direct approach would be to fatique a specimen
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until failure is visually detected, then go back and count the
fatigue striation and subtract from the total cycles accumulated.
This technique, incidentally, was attempted using the optical micro-
scope, but definition at high magnification was not adequate for

quantitative work.




ITI. ADHESION

3.1 ANALYTICAL DEVELOPMENTS

It has been previously introduced that cohesive and adhesive
fracture are similar and a simple pressurized blister configuration
has been suggested for evaluation of adhesive bonds. However, it is
recalled that it was assumed that an incompressible material was
bonded to a rigid material. It is now appropriate to inquire what
will be the effect of departing from these assumptions.

)

From Malyshev and Sa]gam‘k(33 the stress distributions near a

crack for a bond line subjected to tension and shear is:

_ Ty - ; A
oy = : (AO cos (BLn aJrr) B, sin (B&N a+r) + 00D ) (3.1)
- =l . r r
Ty = (A sin (BZn —=) + B_ cos (B2n — =) + 0(D) ) (3.2)
where
! I:Gl + 62(3-4v|>]
B = = n - (3.3)
27 G2 + G‘(B 4v2)

and where A and B, are stress intensity factors, 8 is the distance
from the crack tip along the interface, a is the crack half length,
and G, v are the shear modulus and Poisson's ratio, respectively. For
similar materials above and below the bond line, it is apparent that

-1/2

g = 0, and the stresses are proportional to r And, of course,

when v, = 0.5 and G, or &, approach «, g = 0 again. When the
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materials are different (B # 0), the relations remain qualitatively
the same at a distance from the crack tip exceeding x*;

where

X%z o T/2B (3.4)

At smaller distances, (r < x*) the relations change; stresses in-
finitely growing in amplitude with infinitely increasing frequency
as one approaches the crack tip. The difficulty seems to lie in the
mathematical model as one has difficulty imagining the_physica]
effect on continuity. The fault can be corrected by consideration of
the contact stresses on an assumed convex shape being pressed to-
gether in the region of stress oscillations. None the less, these
corrections need not be made as long as 8 is very small. Consider,
for example, a bond interface between a rubber, £~ = 400 psi,
v = 0.5 and glass E = 107 psi, v = 0.25 then g is calculated to be of
the order of 107°.
Since 8 is so small and corrections need be only applied over

6
a small region, x* = a e 19 , the solution can be approximated by

neglecting these corrections and we can proceed as w1111ams(2])

suggested.

Consider a disk of rubber bonded to a glass disk, with a small
circular unbond of radius R into which a gas pressure may be intro-
duced (see Figure 18).

By considering the upper sheet to be a plate with small deflections,

(44)

fixed at the edges, from plate bending theory it is found that
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4
v _ PR IR ARY
where
Eh3 _ Eh3
b= ——- = 5
12 C(l-v7)
An energy balance gives
.. . (3.6}
| = F+ 2D + SE

where

i

f energy input

Fo= energy stored
2D = energy dissipation rate
SE = surface energy

and the dot indicates differentiation with respect to time.
But for an elastic material (zero energy dissipation) and taking
the variation with respect to fracture surface area, the energy rate

balance reduces to

§(U - A)eq = 2mRy (3.7)
where
Area
A = E{ Pw(r) d Area (3.8)
eq
@]

Some effort can be saved here by recognizing that for this
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Tinear system, Clapyron's Theorem gives Ueq = %>Aeqﬂ Then making the
energy balance it is found that the critical pressure (necessary to

initiate debonding) is

32
po= [ —24 (
cr < 3( | =v?)

or rearranging

|

3 1/2 Evy
) ) -2 (3.9)

P w = 2¥ (3.10)

It is recognized that the plate equations are applicable as long
as the deflections are small and bending considerations are of primary
importance. It is also recognized that as the deflections become
larger, midplane stretching of the bonded specimens, or membrane
stresses grow until finally they overshadow the bending contribution
and predominate. It is clear that fracture criticality description
may be bounded on the one hand for small deflections by using plate
analysis and on the other hand for Targe deflections by using mem-

brane analysis. It turns out this is a relatively simple task.

Membrane analysis, where deflection is assumed of the form(44)
2 2
wir) = w_ (1 -1 (3.11)
o} 2
R
and for an incompressible linearly elastic material
_ - 3[pR
w, = 0.652R gf%%- (3.12)

then energy balance considerations™™ give (45)

*"Note: For the membrane that Wy = k( p>*/3, It can be shown
that where w = aP!/" the strain energy at equilibrium is equal to
I /n+l times the applied work at equilibrium. Th@zu = 1/4 A, 1n this
situation and the energy balance becomes §(-3A, q %ﬂRYa whet

Area
= 5 Plw(r)] d/Area .




Pop My = 2.4 vy _ (3.13)

For an analysis where the contribution of both plate bending and
membrane stresses, the derivation is somewhat more complicated. The

(46)

solution has been approximated by Berger, who reduces the two
field equations in the in-plane deformation, u(r), and bending de-
flection, w(r), to only one equation where a relation for evaluation
of a nonlinear term in that equation is derived from considering the
displacement boundary condition u(R) = 0.

Consider the strain energy relation for an axisymmetric plate
shown in Figure 18 . This relation can be simplified by recognizing

that the contribution of the second strain invarient, ey is

negligible in comparison to the other terms.

2

R 2.2 12 2 12 | ow 57w
U=an ;(vm tSe -2<|-v>[?e2+}——?——2—] %rdr
o or (3.14)

Qo

From the application of the principle of virtual work, the

field equation is found to be

v - ooV =—% (3.15)
where
2,2
_ah
° = T (3.16)

The o tevm is detevmined using the boundary condition on the

radial deflection u, i.e.
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| X
4y 2 Loep©
(EB‘—} = 2 (2.17)
B (aR) Lo ‘
\Dh 5 4 [ CoR) LR 2
El (R - L
4 (ozR)Z Ot7l!(o,R) 2 ll(uR)

where IO(uR) and I'(aR) are modified Bessel functions of the zero

and first order, respectively.

Using the above equations, the deflection is calculated to be

2 2 I (aR) = | (apr
_ PR _(ry _ 2 0 0
o= s [' () ——ocR( MR ﬂ (3.18)

For a circularly symmetric incompressible plate, fixed at the
edges and Toaded with a uniformly distributed Toad, P, equation
(3.14) becomes

R 2, 2 2 4 2
- o W W, , 9w I, 0w, 2 o h
U = =D J <r(————2~) + (5—1:) (*“'r—z) + T (—3—!") + T r) dr

QL
-3
Q

(3.19)

Now applying the energy balance, but taking variations with

respect to the variable oR,

5 i _ 3R
TR Lu A]eq ZﬂRya TR 3 .20)

3R . . .
wher%zzﬁaws determined from equation (4.17)

, QD‘Z ( R)5 i R8 IO(uR) Bm g ) Mi. i IO(aR)
- 5] @ 7 CoR) Ry 2 TR " CoRY,

3 (aR) ol 3, 4 i im'lgfas) M_L(IO(QR)>2‘
-4 2 aR | (aR) 2\ 1 (oR)
(aR) I I

(3.21)
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Using equations (3.18) and (3.19) and developing the relation for

“applied work"

202 171 \2 2 | 8,2.2
(U-A) = 2r P R4[(T9> <(a§)-1> - (aR? - 4 - oR 1= + ‘2 y oh 2 }
A 8Da l o, op
(3.22)
where equation (3.8) gives
R
A = 2% J. Pw(r) rdr
eq
O

After the variation of equation (3.22) is taken with respect to

oR, the surface energy density can be evaluated to be
f

B e i) <) ()
2 BRI Nr? Rt R h R (aR)?

+(§> ( “ s - ‘3>+ = (7)o ms]
| (aR) (aR) (aR) oo (aR) (aR)

|\ 2
4[( o> ( x 1 ) ! 4 o | 1%

+ 6RT| (2 - - - + +
A 2R2 (R wr? v R R 2

2 3
Dh 20 4
T 27 [ - ] (3.23)
3(aR)

This velation is not easily evaluated, thus has been programmed
for evaluation on the computer. It should be noted from equations

(3.21), (3.22), and (3.23) that the variables h and R appear with
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exponentials as high as 8. Thus any error in measurement of these
variables will strongly affect the result, depending also on their
magnitude.

The bonded plate geometry readily lends itself to experimental
verification of the continuum interpretation of adhesion concept.
To review for a moment the predicted response, recall the elastic

plate equation is (see equation (3.9))

4 3

w = gZB’ P vihere D = _Eh 5
© [2C1-v7)

or

Stability of the plate may be investigated by recalling criticality

is defined when

L w-sH) = o Criticality (3.25)
< 0 No fracture
> 0 Accelerating fracture and kinetic energy terms
must be added when velocity significant.
2.5
d PR
dR (U - SE) "O_—A:D—— - ZﬂRYa (3.26)

Note that the rate of strain energy release is proportional to R5
whereas the surface energy rate is linear with R.

In order to maintain criticality, then
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Pchd (3 27)
omeip - Ya = ’
and
2m(64)Dy
Pe (3.28)

From these relations, it is easily seen that a constant applied
pressure gives rise to unstable or accelerating fracture.

For the pressurized plate, the central deflection is linearly
proportional to the pressure as long as the radius of unbond (R)
does not change; but when adhesive fracture takes place, then R
increases and the deflection can possibly increase with no further
increase in pressure. Consider now what happens when the pressure
is reduced. The deflection may continue to increase with decrease
in pressure until fracture decelerates and stops, then R, which is
equal to R + AR(where AR is the distance of fracture propagation)
remains constant with further reduction in pressure and again
deflection is linearly proportional to pressure. This procedure
may be repeated if the rates of fracture propagation are small.
Recall that the Tocus of criticality conditions is a hyperbola in
the pressure versus deflection diagram of parametric value 2ya
for the region of small deflections. For large deflections, the
parametric value of the hyperbola is 2.4ya. Also, for the Targe
deflection region, the membrane equations are applicable and one

expects that
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P (3.29)

As Tong as p/k3 is less than unity, the pressure versus deflection
curve, excluding fracture will have positive curvature, i.e., will
tilt upward. Then as p/k3 becomes greater than unity, the curvature
becomes negative. Fracture, and associated increases in the unbond
radius also reduce the curvature toward negative values, thus fracture
would be difficult to deduce from pressure versus deflection diagrams
in the membrane region.

Fracture data points would be expected to Tie on their respective
hyperbolas in the small deflection and large deflection regions, and

to be distributed in an orderly manner in between in the mixed bending

and membrane region.

8.2 BLISTER PEEL TESTS
Bonded plate specimens were prepared by casting liquid polyure-

(47) A small

thane™™ onto prepared glass and metal circular plates.
hole had been drilled in the center of each plate and fitted with a
plugged pressure fitting so that the surface onto which the rubber

was cast was flat. Lens quality polished glass plates were used

and the metal plates had been surface ground but not polished. The
surfaces were solvent cleaned prior to casting. The cast specimen

were then cured. Following cure, the plug was removed from the pressure

fitting and regulated air supply and pressure transducer were attached.

An LVDT (Linear Variable Differential Transformer) was mounted in a

*
* *50/50 mixture of Solithane 113 and catalyst purchased from
Thiokol Chemical Company.
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tripod arrangement above the specimen to measure central deflections.
Electrical connections were made from the pressure transducer and

LVDT to an X-Y recorder so that real time pressure versus deflection were
directly plotted. Test apparatus and specimen are shown in Figures

19a and 19b.

Air pressure was then carefully introduced into the specimen
causing the rubber to blister up and then peel away from the plates.
Hence developed the blister peel test. Initial fracture was induced
by air pressure to eliminate the effects of flashing around the pressure
fitting. Initiation was detected visually using a telemicroscope.

An air flow constriction was placed in the supply line so that the
unbond progressed relatively slowly and fracture propagation could

be interrupted by reducing the pressure. As a result multiple tests
could be run on each specimen. Shown in Figure 20 are results from a
rubber/glass specimen. Fraction initiation points are shown in
Figure 21. It is recalled from equation (310 ) that the locus of
fracture points would fall along a hyperbola of parametric value of
2ya from a plate theory. Indeed, while the deflections are small,
the data points seem to follow this curve.

Note also that the Y, value is determined from this curve, so
at least one data point would coincide anyway. Then where the de-
flections became large, the fracture points should tend toward a
hyperbola of parametric value 2.4y . This is due to the midplane
stretching or membrane stresses in the rubber specimen becoming more
significant until finally they predominate and the membrane solution
(45)

is applicable. In the transition between the bounding curves,
pr’ <
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Y, is determined using equations (3.21) and (3.23) where o is
determined from equation {3.17). For a number of specimen prepared
in the same manner and tested under similar conditions, it appears

Y, between polyurethane and glass is about 0.22 in #/1n2. Duration
of each test was about two minutes. For similar time lapses, values
for the cohesive surface energy for this material was found to be
about 1.4 in#/inz. Adhesive surface energies less than cohesive
values are expected since breaking primary bonds involved in cohesive
fracture requires more energy than the secondary bonds of adhesion

and because of surface contamination in adhesion.

3.2.1 Experimental Observations

A number of other tests were run, not primarily to verify
the continuum approach to adhesion, but rather to explore the impli-
cations of some unusual observations. Since these are of peripheral
interest, the results will only be briefly described.

Problems were encountered in deflating the blister, and then
reinflating because the rubber almost invariably restuck to the
substrate. Calculatad "fracture energy" values were erratic and
ranged between 0.5 and 0.9 of the original value. The nature of the
original bond and also the resticking was concluded to be of the
Van der Waals type; but it is hypothesized that small pockets of
air (microscopic or smaller) were entrapped during the resticking
so that subsequent fracture passed through the now existing voids
and are interpretable only with a knowledge of the size and dis-

tribution of these voids. The fracture is viswalized to progress
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along a spongy interface. It may be that the original bond inter-

—h
[¢>]

ace is similar in nature, wut with less frequently occurring flaws.
If such is the case, experimental values of the fracture energy will be
lower than values predicted on a molecular basis. However, regardless
of what is happening micro or submicro-scopically, the test results

are valuable for an engineering evaluation of the bond integrity.

One of the purposes for deflating and reinflating the blister
was to determine the viscoelastic effects, if any. The resticking,
previously mentioned, made the response at first glance appear visco-
elastic. However, when powdered talc was injected into the air
supply hole, the resticking was partially prevented and the pressure
versus deflection curves for deflation were more closely approxi-
mated by the reinflation curves. Tests were also run in which the
pressure was increased linear with time until about 0.9 of the
pressure necessary to cause fracture and then held. Deflection
increases occurring at this constant pressure were generally associa-
ted with flaw size increases as visually detected (using telemicro-
scope). Deflection increases were sometimes measured without ob-
served flaw size increases, but the observer could not monitor the
entire periphery of the blister. Stress relaxation would affect an
increase in deflection at constant pressure and constant flaw size.
The viscoelastic effects present were small since the tests were
run slowly in comparison to the relaxation time for the material
and were obscured by the resticking effects.

Mother feature of the test results was that the measured
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surface energy density is time dependent. Values ranging from

o e - , . .2 . .
.7 in#/in" for Tf = | minute to 0.06 in#/in~ for Tf % 20 minutes
were obtained. Similar observations have been made in cohesive
fracture and the investigators defined the time rate of change of

surface energy as (48)

S = y(H %_/% (3.30)

Then inclusion into the thermodynamic power equation for fracture
criticality is straightforward.

While such energy balances have not been made for the visco-
elastic adhesion problem (due to computational difficulties), one
would expect them to be quite similar to the cohesive fracture relations.

The use of 0il as a pressurizing medium also influenced the
calculated adhesive fracture energy. As a matter of fact, this value
was reduced below the measuring capability of the test apparatus. It
is interesting to note that other investigators have used the fracture
energy interpretation for studying environmental effects such as ozone

attack in rubber.(49)

3.8 PROBLEMATIC APPROACH

With the advent of the continuum interpretation of adhesion and
development of some simple, easily applied tests, the scope of ad-
hesion problems that may be quantitatively attacked suddenly broadens.
That is not to say that analytical solutions can be immediately

obtained for every problem for every material, nor that the nature of
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adhesive surface energy is well understood; but at the very least,
an engineering approach is now available to quantitize adhesive
fracture for comparisons between geometry and loading conditions.
There is a philosophical point, however, concerning the oscillating
stress singularities for a crack at the bimaterial interface. Be-
cause of the trig-log behavior, one cannot rigorously compute the

)

strain energy‘directly. Malyshev and Sa]ganik(33 circumvent the
difficulty by noting the improbability that the crack surfaces
penetrate each other as indicated by the mathematical relations.

(50)

Perlman and Sih point out also that any technical material at

the crack tip will have exceeded its elastic Timit. As a practical
matter, they disregard the oscillating singularity as does Eng?and.(S])
To demonstrate the approach a design engineering might take,
consider two problems:
a) An elastic solid propellant grain tending to debond from
its case through pressurization or acceleration loads, and
b) A reinforcing fiber tending to debond from its matrix
material through tension on the fiber. These are

basically similar problems and results are directly

comparable.

3.3.1 ©Solid Rocket Problem

Recall that for Tinearly elastic systems where kinetic contri-
butions may be considered negligible, the energy balance relation

that describes adhesive fracture criticality is:
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U v e
*8"/5\' = "y’a (5»3%}
where v, = adnhesive surface energy density
U = strain energy
A = fracture area.

It is recognized, therefore, that in order to define criticality
conditions for an arbitrary body, it is
a) necessary to find the strain energy due to the loading, and
b) describe the manner this strain energy changes with
fracture surface area.

(52)

The strain energy may be described as

u = ,[ W d vol (3.32)

vol

where
_ A 2 3
W= (§-+ wle” - Zuez - (3\ + 2W)ecAT + §~(3A + 2u) (o0AT)
(3.334a)
or
_ 2 2 2 U 2 2 2
W = 5 e+ e + ez) + u(ex te T4+ e )+ i.(Y><y Foy ot sz )

t

a4 200 obT (e +e +e ) + 2 (3h+ 20 (oAT)?
X y z 2
(3.33 b)
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where W = strain energy density
x> u = Lame's constants
e = first strain invarient
e, = second strain invarient
a = coefficient of thermal expansion
AT = temperature change

In order to find the strain distribution throughout the arbitrary
loaded body in question and to subsequently integrate or sum the strain
energy densities over the volume, it is frequently necessary to use
a finite element stress analysis computer program. Such a program
calls for

a) Idealization of the body as an assembly of simple

(usually triangular) elements attached at nodal
points.

b) Determining the stiffness coefficients for each

individual element.

c) Displaying the coefficients in a two-dimensional array

or matrix. These, when summed, represent the stiffness
coefficients for the idealized structure.

d) Specifying applied Toads and boundary restraints.

The unknown displacements at each nodal point are found through
inversion of the matrix of stiffness coefficients relating these
displacements to the specified loads. Strains, stresses, and re-
action forces are then calculated from the displacements.

The inclusion of a routine for calculating the strain energy
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for each individual element is a relatively simple task, and then,
of course, the total strain energy is just the sum over all the elements.

In this effort the program described in reference (53) was used
to find elastic strain energies developed in axisymmetric bodies
subjected to pressure and acceleration loads. A number of computer
runs were made differing only in that the fracture length was changed
incrementally in the area of interest.

Shown in Figure 22 is a sketch of the idealization of the body
into an assembly of elements. Since we are interested in debonding
around the periphery of the grain end, the elements were made
smaller and more dense in that region. Those familiar with finite
element techniques recognize that the size and shape of the elements
affect the rapidity of the matrix solution and the accuracy of the
results. This is particularly true for bodies containing sharp
geometric discontinuities such as this one does. The art that has
developed for treatment of this particular difficulty involves making
reasonably small elements near the apex of the crack, defining a
region of these elements in the neighborhood of the apex, and then
moving the entire package progressively deeper into the body to
simulate fracture. This has been approximated by making series of
identical elements along the crack trajectory. There are errors
introduced by such modeling, but these are certainly overshadowed
by other assumptions such as considering the solid propellant to be
linearly elastic.

Continuing with the geometry description, the outer boundaries

weve held fixed, which would correspond to a rigid rocket motor case.
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One end of the grain was held fixed in the pressure calculations,
but was considered free in the longitudinal acceleration calculations.
The boundary near the center line was fixed radially, but allower to
move longitudinally to simulate a solid or 100% web fraction grain.

The results of the energy calculations for a 9 inch radius
grain, 17 inches long, having a modulus of 104 psi, Poisson's ratio
of 0.485 and loaded by a pressure of 1000 psi are shown in Figure
23. Three modes of end release were investigated. One, designated
as curve B, is probably the most physically realistic situation in a
burning solid propellant grain. These data were obtained by successive
computer runs in which the crack lengths were increased. The inverse
square root of the slope of these curves was then taken to produce the
curves shown in Figure 24. These normalized data form the parametric
curves , somewhat akin to shape factor curves, for use in design. These,
when using the appropriate parameters, are the debonding failure
criteria for pressure loadings on an axisymmetric body, bonded to a
rigid container. It is noted that the adhesive surface energy
density, A is one of the parameters necessary for evaluation of
the curves. This adhesive surface property may be obtained as des-
cribed in references (31, 45). It should be noted that the left
hand portion of the curve, for a s/b < 0.04 was constructed from
theoretical relationships while the remainder of the curve was derived
from the computer output. It may also be noted that the asymptotic
value on the right hand extremes of the curves do not agree with what
54)

is expected from an infinite grain theoretical so?ution.( It is

thought this discrepancy is due to the relatively short grain length




used in the idealized model. The L/D of the model is only 1.89 or

L/R = 3.78, It is noted that similar discrepancies were obtained
in reference (53); Figure 16 for L/R = 4.0.

An acceleration 1loading of 100g's was placed on the same
idealized geometry except that the ends of the axisymmetric body
were considered to be free. Again, the strain energy was calculated
for various release areas (see Figure 25). The slope and the inverse
of the square root of the slope were obtained with the latter being
shown in Figure 26.

The idealized model used for acceleration has no transverse
plane of symmetry, thus, the L/R ratio is 1.89. Hence, these results

also are not comparable to the infinite length asymptote.

3.3.2 Fiber Pull-out Problem

In fiber reinforced composite materials, strong stiff fibers are
imbedded in a matrix of Tower density and modulus. If the materials
are properly incorporated there results a light but strong material.
Loads imposed on such materials are carried primarily through the fibers.
Since it is very difficult to externally load all the fibers uniformly
the matrix component serves to transfer loads through shear from
highly loaded fibers to adjacent but low stressed fibers. The matrix
must adhere to the fibers in order to implement this load transfer.
This has been recognized for some time in the composites industry,
particularly the rubber tire industry where evaluation tests for the

bond strength are frequently run. The test currently used is a fiber
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(steel) concentrically imbedded and cured in a cylinder of rubber, and
then longitudinally pulled out. The force necessary to withdraw the
fiber is designated the bond strength.

It is readily apparent that stresses will not be uniformly
distributed along the fiber nor in the matrix material. Further
investigation shows stress singularities to exist at the rubber surface
where the fiber is inserted and at flaws in the bimaterial interface.
This problem is basically similar to the solid rocket problem and will
be treated in the same manner.

Mention will be again made concerning the nature of the stress
singularity near the tip of a flaw. Philosophically speaking, known
solutions are only applicable when the properties of the two materials
are the same or when one material is incompressible and the other is
rigid. Otherwise oscillations occur in the singularity and it is not
integrable. It is emphasized that when the oscillations are ignored
as a practical matter, errors of the order of the geometric region
containing the oscillations, are introduced. Checks should always be
made when the oscillating singularities exist.

Consider a stiff fiber tending to be withdrawn from an elastic
but much lower modulus surrounding matrix. This may be modeled using
the direct stiffness method. A half-section of the axisymmetric
model is shown in Figure (27). For these computations, the mechanical
properties of the fiber correspond to that of a carbon filament and

those of the matrix correspond to an epoxy. Shown in Figure (28) are
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the mechanical properties and boundary conditions used in the
calculations.

Calcuiated strain energies versus released area for the particular

Toad inputs are shown in Figure (29). The influence of unbond area
on strain energy was also calculated for areas across the imbedded
tip of the fiber (see Figure (30)). Comparison of these results
(Figure (31)) indicate a propensity to debond at the matrix free
surface for uniform adhesive surface energy density over the bond

area.
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IV. CONCLUSIONS
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and experimentally usina their common Tink, continuum mechanics. The
cohesive fracture studies were conducted assumina linear viscoelastic
media and simplified geometry, whereas the adhesive fracture study
assumed linear elastic media. Due to the difference in material

assumptions and geometrics, the conclusions will be Tisted separately.

4.1 COHESIVE-VISCOELASTIC FRACTURE

1. Predictive fatique relations were analytically derived
for simnle flaw aeometries with disnlacement boundary condi-
tions in a linearly viscoelastic material. These isothermal
relations implicitly show the fatigue life to vary abproxi='
mately with the inverse of the Toss modulus.

2. Experimental fatique test results were not as predicted due
to temperature increases resultina from viscous energy dissi-
pation in the test snecimen.

3. Crack tip temverature measurements during dual frequency
cyclic fatioue test graphically illustrate the importance of
this parameter on fatique Tife.

4, Thermomechanical coupling considerations are necessary for
accurate development of fatigue fracture predictive relations.
Qualitative arquments show the isothermal fatiaque life pre-
dictions are low at imposed frequencies less than the freguency
of maximum eneray dissipation (mm‘)s and high for frequencies

agreater than the frequency W0
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4.2 ADHESIVE-ELASTIC FRACTURE

1. A simple test for evaluating certain cases of adhesive fracture
has been developed. Results are interpreted in terms of a frac-
ture energy that may be used for comparative evaluation of
materials and bonding nrocesses and for engineering fracture
analysis.

2. The flaw-size-load relationship developed by w1111ams(]2)
assuming elastic fracture is experimentally verified.

3. Experimental indications are that adhesive fracture energy is
time dependent, which suagests the need to include time
dependent terms in the enerqgy balance.

4. Until time dependent analyses become available, enaineering

applications of elastic fracture analysis are demonstrated by

problem solutions.

Enaineerina applications of elastic fracture analysis are demon-
strated by solutions to a solid rocket bonding problem and a fiber bull-
out problem. These problems are by no means inclusive of the fracture
nroblems that may be encountered. It is hoped the reader is encouraged
to study fracture and contribute to the further development of this

interesting field.
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Stress Intensity Factor, K,
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For VYarious Geometries
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TABLE 1 (cont.)

d/D } F(d/D) | d/D - F(d/D)
0 0 .6 .238
. L1 .7 240
.2 .155 .8 .233
.3 .185 .9 . 205
A .209 1.0 0.

.5 .227

32
 e—

Ki = oo J/mL F(L/r)

L/v F(L/v) L/r F(L/v)
0 3.39 6 1.71
1 2.73 8 1.58
.2 2.41 1.0 1.45
.3 2.15 10. 1.03
v 1.96 00 1.00
.5 1.83




RAW TEST DATA

Table 2

CONSTANT FREQUENCY TESTS
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Test Frequency Cycles to Crack
No. c/m Failure Growth
100 515 868 001"
101 1000 984 .0014"
102 3000 1030
103 3000 1048
104 4000 1340
105 4000 1337
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Table 3

MULTIPLE FREQUENCY TESTS

F] c/m F2 c/m .

Test Initial Final yeles  yeles  craek
No. Frequency Frequency 1 2 Growth
601 1000 5000 323 677 .00 16"
602 1000 5000 323 727

603 5000 1000 700 255 0o "
604 5000 1000 700 236

606 650 5000 500 700 .0022"
607 650 5000 500 800 .0022"
608 650 5000 500 660 .0016"
609 5000 650 700 480 .0oan
610 5000 650 700 430 .00 14"
611 5000 650 700 370 .0020"
613 515 4000 500 700

614 515 4000 | 500 800 .00 16"
615 515 4000 500 700

617 4000 515 725 275 .00 14"
618 4000 515 725 295 002t




Table 4

AVERAGE CYCLES TO FAILURE

79

Initial Final Total Cycles %
Frequency Frequency at Di fference
c/m c/m Failure
1000 5000 1025
+ 7.8%
5000 1000 945
650 5000 1220
+ 7.7%
5000 650 1126
515 4000 1233
+ 18.1%
4000 515 1010
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Figure 1. Comparison of the propagating flaw solutions for two
loading conditions

N

Ficure 2. Dependence of fatigue 1ife on frequency for
viscoelastic material




Figure 3. Dimensions of Test Speciien
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Figure 5. Observation Angle
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Figure 6. Crack length versus number of cycles for simple tension

fatigue tests on Solithane 113
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Predicted by Ean.

K Estimate for E17(v) varying with temperature
I
l,_..
time
Figure 10. Estimated temperature rise vs. time for a_viscoelastic
sample in uniaxial cyclic fatigue (v < u,
N]c

0] | w 032

Figqure 11. Estimated change of fatigue 1ife at constant
frequency due to temperature increase
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Figure 12. Comparison of fatigue life for fan cooled and

uncooled samples -
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